Addition

Number bonds

Knowing (not working out) pairs of numbers which total to 10, 20 and 100
$3+7,13+7, \quad 30+70 \ldots$
Counting on and back
Counting in steps of $1,10,100,1000$...
$86+52=138$ by counting on in 10 s then in 1s
Rounding and adjusting
Add the nearest multiple of $10,100,1000$ and adjust
$24+19 \Rightarrow 24+20-1=43$

Relationships

Addition and subtraction are inverse operations so you can 'work backwards'
23-17 = 6 so we know $17+6=23$
Doubles and near doubles
$6+6=12, \quad 6+7=$ double 6 and 1 more $=13$

Partitioning

Splitting a number up and then recombining it
$34+45 \Rightarrow(30+40)+(4+5)=70+9=79$

Bridging

Using number bonds to split numbers
$17+7 \Rightarrow 17+(3+4)=20+4=24$

Using related facts

$4+9=13$ so we know $40+90=130$

Equivalent calculations

Use knowledge of structure: increase one number and decrease the other by the same amount $49+6=50+5$

Subtraction

Number bonds

Using number facts we know
$20-17=3, \quad 100-70=30$
Counting on and back
Counting on and back in repeated steps of 1,10 , 100...
$86-32=54$ by counting back in 10 s and in 1s
Find a small difference by counting up
101-98 \Rightarrow from 98, jump to 99, 100, 101...three jumps

Rounding and adjusting

Subtract the nearest multiple of $10,100 \ldots$ and adjust $74-19=74-20$ and then add the 1 back on $=55$

Relationships

Addition and subtraction are inverse operations so you can 'work backwards'
$17+6=23$ so we know 23-6 = 17

Partitioning

Splitting a number up then recombining it
$89-36 \Rightarrow(80-30)+(9-6)=50+3=53$

Bridging

Using number bonds to split numbers up $14-6 \Rightarrow 14-4-2=10-2=8$

Equivalent calculations

Use knowledge of structure: increase or decrease both numbers by the same amount
601-278=599-276

Multiplication

Times tables

Knowing (not working out) facts
$\mathrm{Y} 2 \rightarrow \mathrm{x} 2, \mathrm{x} 5 \times 10 \quad \mathrm{Y} 3 \rightarrow \times 3, x 4, x 8$
Y4 \rightarrow all facts up to 12×12 quickly
Knowing the effect of $x 0$ and $x 1$

Doubling... and doubling again

$13 \times 2=26$, so $13 \times 4=52$ and $13 \times 8=104$

Using related facts

8×6 is double 4×6
$24 \times 5=(24 \times 10)$ then half it $=120$
$12 \times 15=12 \times 5 \times 3=60 \times 3=180$
Multiplying by $10,100,1000$...
$63 \times 10=630$ (and $6.3 \times 10=63$ etc)

Partitioning

$23 \times 6 \Rightarrow(20 \times 6)+(3 \times 6)=120+18=138$
$13 \times 12 \Rightarrow(13 \times 10)+(13 \times 2)=130+26=156$

Relationships

Multiplication is repeated addition
$14 \times 3=14+14+14=42$
Multiplication and division are inverse operations so you can 'work backwards'

Rounding and adjusting

$99 \times 5 \Rightarrow 100 \times 5-5=495$

Equivalent calculations

Use knowledge of structure: apply a multiplicative increase to one factor and a corresponding decrease the other
$18 \times 6=9 \times 12$

Division

Times tables

Multiplication and division are inverse operations so you can 'work backwards'
$8 \times 7=56$ so we know $56 \div 8=7$

Halving

Halving is $\div 2$
Halving and halving again is $\div 4$ (and finding $1 / 4$ or 25\%)
$64 \div 4=64$ halved (32) and then halved again $=16$
Dividing by 10, 100, 1000...
$750 \div 10=75$ (and $750 \div 100=7.5$)

Relationships

Division can be seen as repeated subtraction
$24 \div 6 \Rightarrow$ starting at 24 , we take off $6 s \Rightarrow 18,12,6,0=4$ groups
Division can be worked out by repeatedly adding, too $24 \div 6 \Rightarrow$ from 0 , we jump to $6,12,18,24$...
4 jumps $=4$
If I know $3 \times 7=21$, what else do I know?
$30 \times 7=210$,
$0.3 \times 7=2.1$ etc

Equivalent calculations

Use knowledge of structure: apply a multiplicative increase or decrease to both numbers
$600 \div 50=60 \div 5$

